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Abstract

Applications such as animation and scientific visualization demand high performance ren-

dering of complex three dimensional scenes. To deliver the necessary rendering rates, highly

parallel hardware architectures are required. The challenge is then to design algorithms and

software which effectively use the hardware parallelism. This paper describes a rendering al-

gorithm targeted to distributed memory MIMD architectures. For maximum performance, the

algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is

examined both analytically and experimentally. Its performance for large numbers of processors

is found to be limited primarily by communication overheads. An experimental implementation

for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide

range of scene complexities. It is shown that minimal modifications to the algorithm will adapt

it for use on shared memory architectures as well.
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1 Introduction

Applications such as real-time animation and scientific visualization demand high performance

rendering of complex three-dimensional scenes. While the results achieved on current hardware

have been impressive, major improvements in performance will require the use of highly parallel

hardware and scalable parallel rendering algorithms. This paper describes one such rendering

algorithm for MIMD architectures. Although the algorithm is designed for distributed memory

message passing systems, straightforward modifications will adapt it for use in shared memory

environments.

In the following section, we introduce the traditional rendering pipeline and consider the issues

involved in parallel]zing it. Next, we present our algorithm and give a theoretical analysis of its

performance. We then describe an implementation on the Intel iPSC/860 1 hypercube, and compare

the experimental results with analytical predictions. Finally, we examine how the algorithm can

be adapted for shared memory MIMD architectures.

2 The Rendering Problem

We assume that we are given a scene consisting of objects described as collections of 3D triangles,

some light sources, and a viewpoint. The goal is to produce a 2D representation of the scene taking

into account the lighting and perspective distortion (Fig. 1). For simplicity we assume the lights

are all point light sources and the triangles possess only a diffuse coloring attribute. The addition

of other material properties, such as specularity and texture, do not really affect the main structure

of the algorithm.

There is now a fairly well established pipeline for the fast rendering of such three dimensional

scenes [10]. The standard pipeline may be represented as shown in Figure 2. The exact sequence

is not fixed, for example shading may be done after transforming (indeed, an essential portion of

Phong shading must be done in the rasterizing step [3]), or clipping may be delayed until after the

rasterization step.

One way to parallelize the rendering process is to map the various stages of the pipeline directly

into hardware [2]. This approach has been very successful, and has been adopted by a number

of graphics hardware vendors. But the ultimate performance attainable by directly exploiting the

pipeline is limited by the number of stages in tile pipe. To achieve a greater degree of parallelism,

other strategies must be examined.

As is well known [11], there are three main steps in the rendering process which account for

most of tile computation time. These are

1. The floating point operations performed on objects, such as transforming, lighting, and clip-

ping.

2. The rasterization of primitives transformed into screen coordinates.

3. Writing pixels to the frame buffer.

(We ignore here the problem of traversing the database prior to rendering.) The renderillg time will

be limited by the slowest of these three steps. Moreover, in current serial an([ pipelined hardware

implementations, each of these three steps is operating at its limit [11]. Thus to obtain significant

improvements in performance, it is necessary to map the rendering pipeline onto a hardware archi-

tecture in which each of these three steps can be parallelized, preferably by replicating one basic

1 iPSC, iPSC/2, iPSC/860, and i860 are trademarks of Intel Corporation.



typeof processing element. We refer to parallel computations in step 1 as object parallelism, and in

steps 2 and 3 as image or pizel parallelism. A system with a high degree of object parallelism is de-

scribed by Torberg in [12]. A system with a high degree of pixel parallelism, the classic Pixel-Planes

system of Fuchs and Poulton, is described in [6]. Finally, a system incorporating both object and

pixel parallelism is described by Fuchs et al. in [7]. In all these cases, the algorithms for 3D render-

ing are mapped onto specific hardware, more or less constructed for that purpose. In our case, we

map the rendering algorithm onto more general purpose parallel architectures. This allows us to

experiment with the algorithm at a high level and with a high degree of flexibility. Once the critical

performance parameters and tradeoffs are thoroughly understood, then special-purpose hardware

can be designed to achieve maximum performance. As we will show, the algorithm described in

this paper achieves both object and pixel parallelism, and will run on systems containing from 1

to p processors, where p is bounded by the number of scanlines. For an excellent discussion of the

various approaches to object and pixel paraUelization, see [11].

Besides exploiting both types of parallelism, a good algorithm must ensure that all large data
structures are distributed among the processors without wasteful duplication. In our case there are

two such structures: the list of triangles and the frame buffer. We distribute these structures evenly

among the processors, allowing the algorithm to scale to more complex scenes and higher resolutions.

Note that distributing the triangles corresponds to object parallelism, while distributing the frame
buffer corresponds to pixel parallelism.

3 Algorithm Description

To describe the algorithm we first specify how the data structures are divided among the processors:

• The triangles are distributed evenly in round-robin fashion to all processors.

• The frame buffer is divided among the processors by horizontal stripes (Fig. 3).

• Small data structures, such as the lights and viewing parameters, are replicated on each

processor.

The distribution of the frame buffer can be modified considerably without affecting the basic struc-

ture of the algorithm. Essentially all that is needed is a regular geometric division. We have

implemented only a division into horizontal stripes, which seems appropriate for rendering into

a frame buffer of size 1024 x 1024 using from 2 to 128 processors. The effect on performance of

different splittings of the frame buffer is an interesting topic for further research.

With the above distribution of data, the following strategy is used:

The shading, transforming, and clipping steps are performed by each processor on its local

triangles.

Before rasterizing a triangle, it is first transformed into screen coordinates, then split (if

necessary) into trapezoids along local frame buffer boundaries (Fig. 4). Each trapezoid is

then sent to the processor which owns the segment of the frame buffer in which it lies.

Upon receiving a trapezoid, a given processor rasterizes it into its local frame buffer using a

standard z-buffer algorithm[4] to eliminate hidden surfaces.

For simplicity, triangles which lie fully within a single frame buffer segment and triangular pieces

of split triangles are treated as degenerate trapezoids in which two of the vertices happen to be
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the same point. To reduce communication overhead, trapezoids destined for the same processor

are buffered into larger messages before sending. The choice of buffer size, which can significantly

affect performance, is discussed more fully later.

The algorithm may be summarized as follows. Each processor performs the loop:

Until done

If local triangles remain {

Select a local triangle

Shade the triangle

Transform, back face cull, and clip

Split into trapezoids

Put the trapezoids into outgoing buffers

When a buffer fills up, send its con_ents

If this is the last local triangle

Send all non-empty buffers

>

>

If incoming messages exist

For each incoming message

Rasterize all of the trapezoids in the message

To avoid having to store large numbers of trapezoids in memory, the algorithm alternates between

splitting triangles into trapezoids and disposing of incoming trapezoids by rasterizing them into

the frame buffer. It is not obvious what the proper balance is between these two activities. If a

processor concentrates on rasterizing incoming trapezoids, it may starve other processors by not

generating enough work to keep them busy. Alternatively, if incoming messages are not flushed

quickly enough, message queues will fill up and outgoing buffers will be delayed. Experiments have

shown that there is a slight advantage in processing at least a few triangles before checking for

incoming data. Beyond that, the algorithm is relatively insensitive to this choice.

A significant feature of this algorithm is the absence of a synchronization point in the loop.

Processors will start off with nearly the same number of triangles, but several factors will tend

to unbalance the workload. First, the culling and clipping step requires a different number of

operations for different triangles, and may cause triangles to be thrown away, or to be subdivided

into several smaller triangles. Next, the time required for splitting into trapezoids varies with the

orientation of the triangle and the number of frame buffer boundaries which are intersected. The

number of trapezoids in turn affects the buffering and communication times. Similarly, varying

numbers of incoming trapezoids, along with differences in their size and the results of z-buffer

comparisons, will cause variations in the rasterization time.

These considerations suggest that any synchronization points in the loop will introduce signifi-

cant amounts of idle time, since each iteration of the loop would be bound by the slowest processor.

Instead, our strategy is to let individual processors proceed as asynchronously as possible. Of

course, some coordination is necessary to ensure that message buffers are correctly passed from

one processor to the next. But the use of an asynclironous message-passing protocol, combined



with dual send and receive buffers, has proven effective in minimizing idle time spent waiting for

messages.

However, the lack of a synchronization point leads to difficulties in deciding when to exit the

loop. Even after a given processor completes work on it local triangles, it has no way of determining

by itself when it has received the last incoming message from another processor. We use the
following algorithm to detect termination:

. Each processor maintains a list of all other processors to which it sends trapezoids. We refer

to these as neighbors of the sending processor. Note that a processor may be a neighbor of
itself.

.

o

.

After the last local triangle is processed, a processor sends a Last Trapezoid (LT) message

to each of its neighbors, indicating that there will be no more work forthcoming from that

particular source. The message passing protocols must preserve message order so that LT

messages do not precede the trapezoids to which they refer.

When a processor receives an LT message, it replies with a Last Trapezoid Complete (LTC)

message. Receipt of an LTC message from a neighbor indicates that the neighbor has finished

rasterizing all of the trapezoids sent to it. The processor records this fact.

When LTC messages are received from every neighbor, a processor knows that all of its

neighbors have finished all of the work that it gave to them. The processor then produces a

Neighbors Complete (NC) message which it sends to a specific processor, which we arbitrarily
choose to be processor 0.

. When processor 0 receives an NC message from every processor (including itself), it knows

that each processor has finished all of the work sent to it by all of its neighbors, and that the

local frame buffer segments now contain the final image. Processor 0 then broadcasts a Global

Completion (GC) message to all processors. Receipt of a GC message notifies a processor

that rendering is complete and that it should drop out of the loop.

From the time it generates LT messages for its neighbors until the time it receives a GC message, a

processor must continue to check for incoming trapezoids and process them. Note that for a given

number of processors p, the NC messages can be accumulated in time O(logp) using a parallel

merge algorithm, rather than using the O(p) method described above. Similarly, the GC broadcast

can be done in time O(logp), or even O(1) if the architecture directly supports broadcasts.

4 Performance Analysis

To analyze the performance of the algorithm we will break it down into the following steps:

* Shading, transforming, culling, and clipping.

. Splitting into trapezoids.

* Sending trapezoids.

• Rasterizing trapezoids.

. Storing pixel data.

• Wait time.



* Termination algorithm.

For each of these steps, we will break down the running time into a general linear part and an

explicit nonlinear part. The linear component is that part which parallelizes perfectly, and thus

will speed up linearly as the number of processors increases. The nonlinear component contains

overheads which do not decrease linearly with increasing numbers of processors, and which therefore

detract from perfect speedups. Before proceeding we introduce the following notation:

p = number of processors

n = number of triangles

y = height of the frame buffer (in scanlines)

h = average height of triangles (in pixels)

d = trapezoid buffer depth (in trapezoids)

r = number of trapezoids generated per processor

v = average number of trapezoids generated per neighbor

We assume that y and h are fixed, y is a multiple of p, n >> p, and that the triangles comprising

the scene are uniformly distributed with respect to our splitting of the frame buffer. Note that h

is the average triangle height on the projection plane, rather than in world coordinates. The linear

part of the running time is a term of the form

c (1)
P

where the constant C is machine- and scene-dependent, but independent of n, p, and d. This is

the contribution to the running time that parallelizes perfectly. TILe nonlinear part of the running

time will be everything else. We will attempt to determine this as explicitly as possible in terms of

-tile above variables and machine dependent constants.

4.1 Shading, transforming, culling, and clipping

Since the triangles have been distributed evenly to tile processors, and these operations may be

performed independently on each triangle, this part of the algorithm contributes only a linear term

to the running time. 2

4.2 Splitting into trapezoids

Each triangle must first be split at its middle vertex (see Figure 4). Since this can be performed

independently for each triangle, it contributes only a linear term to the running time. As a side

effect, this split effectively doubles the number of triangles to 2n while reducing their average height

to h/2. Next, there is a certain setup cost before actually dividing the triangle into trapezoids.

Although this cost would not be incurred in a serial version of this algorithm, in the parallel version

it still contributes only a linear term to the total running time. This cost may be regarded as part

of the parallel overhead of the algorithm. Although we are not explicitly isolating the parallel

overhead in our analysis, it does in fact contribute very little to the running time, so that the

performance of the parallel algorithm running on one processor is virtually identical to that of a

serial version.

2Strictly speaking, back face culling and clipping can introduce local variations in workload which will detract

from perfect speedup. But since we are assuming a uniform scene for purposes of analysis, we can ignore this effect.

Similar variations can be introduced in the rasterization and z-buffer computations, and will likewise be ignored. In

practice, the impact of these variations is scene-dependent.



A nonlinear contribution to the running time results from actually splitting the triangle. In

loose terms, the more processors we have the more we must split the triangle, so that adding

processors increases the number of trapezoids in the system. To quantify this, one easily computes

that a triangle in the projection plane crosses a local frame buffer boundary line on average hp/2y

times. Since back face culling will, on average, eliminate half the original triangles, the number of
resulting trapezoids per processor is

2_a2(_2_ + 1) nh n
7" _

p 2y + - (2)P

and the time to split n triangles among p processors is simply rtsvlit, where tsptit is the time for
one split. We can further analyze tspli t by counting the arithmetic operations performed. The

actual time will of course depend on the precise assembly code generated and the characteristics

of the processor. In our current implementation, one split requires 15 integer adds and 10 integer
compares.

4.3 Sending trapezoids

To a first approximation we assume that

• A single processor sending several messages must do so one at a time.

• Multiple processors can be sending simultaneously.

• A processor does not incur communication overheads for messages to itself.

The second assumption in particular is somewhat questionable--edge contention among compet-
ing sends can seriously impair message passing performance, as shown in [1]. This point will be
discussed more fully in later sections.

Communication time can be divided into two independent parts, a fixed overhead, or latency, tt,

and a transfer cost tt. The latency includes various software overheads and hardware delays, effects

from network contention, etc. This is incurred on a per message basis. The transfer cost is just the
inverse of the network bandwidth multiplied by the total number of bytes to be communicated.

A processor will, on average, generate v = rip trapezoids for each of p destinations, including
itself. If tb is the per-byte transfer cost and s is the size of a trapezoid in bytes, then

tt = (p- 1)vstb (3)

Taking into account buffering, the number of messages m generated by each processor is

and the total time for sending trapezoids is simply

tsend = mtl+tt = (p-1)([d]tt+vstb) (5)



4.4 Rasterizing trapezoids

Since each pixel of each trapezoid is rasterized exactly once, and this work is split equally among

the processors, it would appear that this part of the algorithm is linear. However, by splitting

the triangles into trapezoids we incur an overhead for each trapezoid prior to rasterization. The

rasterization step essentially consists of several applications of the Bresenham linear interpolation

algorithm [5], once in the vertical direction and once per scanline in the horizontal direction.

The overhead is incurred in the vertical application of the Bresenham algorithm, which must be

performed for every trapezoid. Therefore the nonlinear contribution to the running time is rtB,

where tB is the startup cost for the Bresenham algorithm. In terms of integer arithmetic operations,

tB is 5 divides, 10 multiplies, and 20 adds.

4.5 Storing pixels

The z-buffer compare and conditional store operations are perfectly distributed among the proces-

sors, so this computation contributes only a linear term to the running time.

4.6 Wait time

The rendering algorithm as viewed by a single processor consists of two distinct phases. During

the first phase, the processor alternates between processing triangles and rasterizing trapezoids.

If no trapezoids have arrived during a loop iteration, the processor can keep busy by processing

more triangles during the subsequent iteration. In the second phase, all local triangles have been

processed and the processor polls for incoming trapezoids until a Global Completion (G C) message

arrives. During this second phase, the processor will be idle if trapezoids fail to arrive at least as

fast as they can be rasterized. Furthermore, no processor can terminate until the slowest one has

finished.

A precise treatment of this situation requires an excursion into queueing theory, which is beyond

the scope of this paper. Instead, we present an argument based on the capacity of the commu-

nication network which approximates the observed performance of the algorithm. Our argument

assumes that performance is communication bound, rather than compute bound. For purposes

of exposition we will use a hypercube architecture. A similar analysis could be applied to other

communication networks.

When a processor completes its last triangle, it must flush its partially filled trapezoid buffers.

Since one of the goals of our algorithm is to conserve memory, we will assume that d <_ v/2, in which

case outgoing buffers will contain on average d/2 trapezoids remaining to be sent. If we assume

a uniform scene, then processors will reach this state at more or less the same time. Therefore

the entire system contains p(p - 1) messages of average length d/2 which will be injected into the

network at about the same time. Because of edge contcntion, these messages cannot all be sent

simultaneously. For a hypercube of size p = 2 k processors, the average distance a message must

travel, and therefore the number of edges it ties up, is kp/2(p- 1). Since the total numi)er of edges

in a hypercube (assuming unidirectional communication) is pk/2 we have a bandwidth deficit of

the order

P(P- 1)d2-_ _ pd (6)
2

2

Thus wait time, t_it, is roughly proportional to the shortage of communication capacity:

pd (7)
twait ---- 0--

2



In a subsequent section, we will determine a empirically for a particular implementation.

4.7 Termination algorithm

The termination algorithm requires each pair of neighbors to exchange messages, followed by a

global merge step and a broadcast. The time required for these last two operations depends on the

architecture of the interconnection network. If we assume a hypercube, then

tq_it = 2 [(p - 1) + log_ p] tt (8)

There is no per-byte cost, since these messages are used only as signals and contain no data. 3

4.8 Total time

Combining all of the above contributions, we find the total running time t for the algorithm:

t -- C n + rtsplit + tsend + rtB + twait + tquit (9)
P

Substitutingand rearranging,we get

C n
+r(tspt,t +ta)+(p--1)vstb+ 2 [(p --1) + log2 p] tt + (p --1) [d] t, +a_ (10)t-=

P

In section 6 we present the experimental results for a particular implementation of this algorithm,

and compare those results with predictions from the analytical model. First, we describe some
pertinent details of our implementation.

5 iPSC/860 Implementation

We have implemented the above rendering algorithm in the C language on the Intel iPSC/2 and

iPSC/860 hypercube computers. All of the experiments described below were performed on the

latter system. The actual implementation differs slightly from the algorithm described above, in

that shading calculations are pulled out of the main loop and done as a preprocessing step. (This

is advantageous if a shaded scene will be displayed repeatedly using different viewing parameters.)

Consequently, the rendering rates quoted below do not include the time for shading. Remember

that the shading step parallelizes perfectly, and so would only improve the observed processor

utilization. We should also note that the iPSC systems do not currently provide a graphical display

device, so rendering rates do not reflect the final display step of the pipeline in Figure 2. 4

Our sample implementation incorporates a standard scanline-based, z-buffered triangle renderer.

The shading calculations take into account diffuse and ambient lighting components at the triangle

vertices, and the rasterization process smoothly interpolates these values across the triangle. We

use 8 bits for each of the red, green, and blue color channels, 24 bits for the z buffer, and pixel

positions are maintained to a subpixel accuracy of one part in 64. The current implementation

makes little attempt to optimize the graphics code for the i860 processor chip employed in the

iPSC/860. Tile code is written entirely in a scalar (as opposed to vector) style, and no use has

3Actually, the message must at least convey its type, but we assume that all messages contain type information,

which we include as part of the latency, tj.

4Our current practice is to merge tile finished contents of the local frame buffer segments into a file for later

viewing ofltine. Our emphasis here is on the behavior of the parallel rendering algorithm, rather than on the use of

tile iPSC as a rendering engine.

10
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been made of the built-in graphics features of the i860. In addition, the compilers available to

us exploited few of the high performance capabilities of the i860, such as pipelining and dual

instruction mode. With better compilers and some tuning, the performance of the graphics code

should increase substantially, leaving communication and I/O as the limiting factors on rendering

speed.

In contrast to the graphics computations, we have gone to some lengths to optimize message

passing. The iPSC operating system provides asynchronous routines for both message sending

and receiving, which can be used to overlap message transfers with other computations. We have

taken advantage of these, in conjunction with a double-buffering scheme, to hide most of the

overhead associated with message transfer time (it) as well as much of the edge contention delays.

One measure of overlap is the number of times processors must wait when in_erting trapezoids into

outgoing buffers because the buffers are still busy from a previous send. Figure 5 shows this number

expressed as the ratio of total buffer busy-waits to the total number of trapezoids generated across

all of the processors. The values plotted are for buffer sizes ranging from 2 to v/2 with varying

numbers of processors, using our standard test scene, described in the next section, s Each data

point is the mean across five runs. It can be seen that the overlap strategy is very successful. In

all cases, for d _> 3, more than 99.5% of the trapezoids generated were able to be placed in buffers

immediately.

_On the iPSC/860, different message passing protocols are employed for short messages (_< lO0 bytes) vs. long

messages (> 100 bytes). Since our trapezoid data structure is 64 bytes long, buffers of depth 1 have different

performance parameters than larger ones. For simplicity, we limit our analysis to buffer sizes > 2.

11



6 Performance Results

In this section we present experimental results from the iPSC/860 implementation of our algorithm
and compare them to predictions based on our performance model. Our standard test scene is

composed of 100000 10 x 10 pixel triangles in random orientations (Fig. 6). This scene was chosen

since it statistically approximates a uniform scene for purposes of comparison with the performance
model. In all eases, we enable back face culling so that the number of triangles actually drawn
is about half of the total. The scene is rendered with a frame buffer resolution of 512 x 512.

The average triangle height on the projection plane as measured by the renderer is h = 8.3. To

determine the effects of scene complexity, we modify the standard scene by varying the number of

triangles while holding the triangle size, in pixels, constant. Unless otherwise noted, performance

figures are mean values across five runs.

6.1 Sensitivity to buffer depth

As mentioned previously, the selection of buffer depth can have a significant impact on performance.

Figure 7 shows scatterplots of rendering time vs. buffer depth for our standard scene, with p ranging

from 8 to 128. (Because of memory requirements, a minimum of 8 processors are needed to render

the standard scene.) Again, d ranges from 2 to v/2. The sensitivity to d can be readily understood

in terms of the performance model. If d is small, then the ratio v/d in Equation 5 is large and the

costs due to message latency are high. If d is large, latency is reduced but wait time due to network

congestion increases (Eq. 7). For sufficiently large d, our algorithm is equivalent to a simpler two-

phase version in which (1) all triangles are first split into trapezoids and the trapezoids are stored

in memory, then (2) trapezoids are sent to their destinations and rasterized. It is clear from the

performance model that this simpler algorithI_ not only wastes memory, but also maximizes edge

contention by injecting all of the trapezoid data into the network at once. By using smaller buffer

sizes and allowing splitting and rasterization to proceed together, our algorithm not only conserves

memory, but spreads the communication load over a longer period of time.

For best performance, we would like to be able to predict an optimum buffer size, dopt, without
having to resort to a tong series of test runs. If we know something about the scene, such as r, or

n and h, then the performance model can be used to determine a near-optimal value for d. (Recall

that v = r/p.) If we take the derivative of Equation 10 with respect to d (ignoring the ceiling

function) and solve for the minimum, we get

J2 (p - 1) vt_dopt _p (11)
¥

The case where r is unknown in discussed in Section 6.4 in the context of non-uniform scenes. We

now turn our attention to values for tt and ¢r.

6.2 Message latency and wait time

Experimental measurements of message latency on the iPSC/860 have typically been done under

carefully controlled test conditions in order to get consistent results. Because our algorithm is very

dynamic, and because we include contributions due to buffer management, published values for

message latency are not directly applicable. In addition, our simplistic analysis of wait time does

not yield a value for the proportionality constant e_. These considerations lead us to determine the
values of tl and c_ empirically. We recast Equation l0 as a function of d:

C1
t( d) = Co + -_ + C2,1 (12)

12



Figure 6: Standard test scene comprised of 100000 randomly oriented 10 x 10 pixel triangles. About

half of the triangles have been eliminated by culling, h = 8.3.
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where

c0 c n= +r(t,ptit+tB)+2[(p--1)+log2p]tto (13)
P

C] = (p- 1)vtt (14)

C2 - otp2 (]5)

For convenience, we again ignore the ceiling function. Because of the high degree of overlap achieved

between communication and computation in our implementation, we have also dropped the term

for data transfer time from Equation 3. Finally, we substitute tto for tt in the contribution from

the termination algorithm to reflect the differing protocols for short and long messages. We can

now do a least-squares fit using the data from our standard test scene to determine, approximately,

the values of the coefficients Co, C], a_d C2, and then solve for tt and ct. The results are shown in

Table 1.

The data suggest that tl and (_ are not constants, but are instead functions of p, or more specifically,

k, where k = log 2 p. Ilowever, the limited sample size does not allow any firm conclusions to be

drawn, and in the absence of a theoretical basis for determining tile form of tile functions, we have

chosen to use the mean values.

6.3 Measured vs. predicted performance

"lb further exl)lore the parallel pcrf,,;mance of our algorithm and to validate the analytical model,

we varied tile COml)lexity of the ralLdom triangle scene from 6250 to 200000 triangles in multiples

of 2. For each scene, p ranged fi'om the minimnm allowed by memory requirements up to 128 in

powers of 2, using the optimal buffer depth predicted by Equation 11 (Table 2). Figure 8a shows the
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] Time in #s

I p ' tl a

8 452 113

16 443 120

32 419 152

65 411 185
Mean 431 143

Table 1: Empirical values of message latency and wait time for the standard test scene.

_200000

47 94

25 50

13 27

15

9

m

71

38

21

12

Table 2: Predicted buffer sizes for several random triangle scenes.

observed rendering rates for each scene. The results show that performance continues to increase

as processors are added, even for the smallest scene, although large numbers of processors are most

effective for more complex scenes.

The usual measure of effectiveness of a parallel algorithm is speedup, defined as the time to

execute a problem on a single processor divided by the time to execute it on p processors. In our

case, only the smallest test scenes can be run on a single processor due to memory limitations,

so traditional speedups cannot be computed directly. Instead, we normalize performance across

scenes by comparing the rendering rates, instead of the execution time, and use these to estimate

speedups. 6 We define the performance level for p = 1 to be the rendering rate of the largest

test scene which would fit on a single processor, which was 4366 triangles/second for n = 12500.

Table 3 shows speedups relative to this case. Speedups on large numbers of processors (64 and

128) are poor primarily due to communication costs (tsend and tw_it), which are the dominant

overheads. As p decreases, the trapezoid costs (tsvlit and tB) become the primary overheads, and

speedups are reasonable on moderate numbers of processors (16 and 32). Figure 9 shows the relative

contributions of the individual terms in the performance model for our standard test scene. On the

plot, tsplit and tB have been combined into a single term, ttr_p. Note that the contributions for tse,,d

SWe consider our normalized speedup computations to be just estimates for two reasons: (1) As tile density
of the random triangle scenes increases, a larger proportion of the z-buffer comparisons will fail because pixels
are obscured by other triangles which lie closer to the viewer. This results in a lower percentage of frame buffer
stores and slightly reduced computational cost per pixel. (2) Because of the suspected effects of caching (described

subsequently), execution times on small numbers of processors may not be directly comparable to those on larger
numbers of processors. This effect could be mitigated by comparing performance at constant values of n/p, but the
compensation is only partial since the size of the frame buffer segments is independent of the number of triangles.
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Figure 8: (a) Observed rendering rates for several random triangle scenes. (b) Observed and pre-

dicted rendering times for n = 12500, 50000, and 200000. Solid lines are the 1)redicted performance.

and tw_it are roughly equal because tile buffer size was chosen on tile basis of Equation 11. The

divergence of t,¢_d and twait at large values of p illustrates tile importance of tile ceiling function

in Equation 10, a contribution which was ignored in order to derive Equation 11.

We note in passing an interesting phenomenon in the speedup data. At certain points in the

table (shown in bold type), dramatic increases in performance are observed from one value of p

to the next. Since these points occur at fixed values of n/p, we conjecture that they are due to

caching on the i860 processor. As p increases, the size of several data structures (triangles, frame

buffer segment, message buffers) decreases, which may result in better cache hit ratios.

In Figure 8b, we compare the observed and predicted performance of several test sce,es. To

predict performance using our model, we must first determine the value of the scene-dependent

constant C. This is done by taking the observed rendering time on some number of processors p and

solving Equation 10 for C. We have chosen the entries lying along the boldface diagonal in Table 3

as the points at which to solve for C (points of constant n/p). We also need values for lsplit , tB, and

tto. Based on the operation counts from Section 4 and timing information from [8, 9], we estimate

that tsplit = 2.500 ItS and t/3 = 13.375/is. Since communication in the termination algorithm uses

synchronous (non-overlapped) message passing routines and incurs very little overhead beyond the

actual message transmission, we use published latency data [1] to set tto = 75 #s. As the plot

shows, our model successfully predicts the general performance trends. Some discrepancies occur

for small p where the suspected caching perturbations occur, and the model underestimates slightly

the overheads at large p. This lends credence to our previous observation that a is an increasing

16
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Speedup

p IIe25OlmOOl  5oool50000
1 0.6 1.0 - -

2 1.7 1.2 2.0 -

3.2 3.4 2.5 3.8

5.8 6.2 6.4 5.1

9.9 10.7 11.6 12.3

13.1 16.1 18.6 20.1

15.3 18.6 23.4 28.0

18.8 21.2 25.6 31.4

100000 $00000

7.5

10.5 14.2

20.7 25.5

32.8 40.1

37.4 50.6

Table 3: Speedup estimates derived from observed rendering rates. Boldface entries indicate unex-

pectedly large performance increases.
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Figure 9: Predicted contributions of individual components of the performance model for our

standard test scene, tt_p = v(tsp.t + tB).
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functionof k, although other terms may be involved as well.

6.4 Performance on non-uniform scenes

Although our random test scene is useful for analyzing our algorithm, it is not a very representative

application. To obtain a better feel for performance on more realistic scenes, we ran experiments

with two additional test cases, shown in Figures 10-11. The first scene, which we will refer to as

Plato, contains a large number of small triangles with the density of triangles varying from place

to place in the scene. The second scene, designated LDEF, contains a wide range of triangle sizes,

which is very effective at desynchronizing the processors because of differences in rasterization time.
Both scenes were rendered at a resolution of 512 x 512.

The first issue we address is that of picking a buffer size. Figure 12 shows rendering time as a

function of buffer size, where d varies from 2 to 1.25v. In contrast to the uniform scene shown in

Figure 7, the optimal buffer sizes for both of these scenes occur at much larger values of d. Thus

Equation 11 is not applicable because the processors are much farther out of sync and the final

buffer flushes are spread out in time, reducing the effect of twait. In the absence of an analytical

prediction for a good buffer size, we note that v/2 works well in many cases. Other experiments

have shown that for small values of n/p, increasing the buffer depth to around v offers additional

performance gains, a trend hinted at in Figure 12.

If r, and hence v, are unknown, then the best we can do is hazard a guess. A buffer depth

of 10-100 seems like a good starting point since it reduces latency costs by one to two orders of

magnitude. As a rule, buffer depth should decrease with increasing p. If a scene will be rendered

repeatedly with minor changes in the viewing parameters from frame to frame, as in an animated

sequence, then the renderer can automatically adjust the buffer size. For the first frame all initial

guess is needed. For subsequent frames, the observed value of r from the previous frame is used to

derive a better guess for d.

Figure 13 shows rendering rates for the LDEF and Plato scenes using a buffer depth of v/2.

Because of memory limitations, neither of these scenes could be rendered with a single processor at

512 x 512 resolution. Hence we have no single-processor data on which to base speedup estimates.

Examination of the available data shows that processor utilization is best for p of 16-32 or less,

consistent with the previous results for scenes of these sizes. Note that performance of the Plato

scene peaks out at 64 processors and then declines as the communication overhead becomes domi-

nant. Careful choice of buffer sizes can boost the Plato performance on 64 and 128 nodes to about

125000 triangles/second.

7 Considerations for Shared Memory Architectures

Although the aigt, rithm described in Section 3 was designed specifically for distributed memory

machines, it can be readily adapted for shared memory architectures. We assume that viable shared

memory systems would support an efficient mechanism for implementing critical sections on shared

variables. Given this, the basic structure of the algorithm remains the same, with interprocessor

communication taking place through shared data structures rather than with messages.

Instead of partitioning the triangles in round-robin fashion and assigning them to particular

processors, they are placed in a shared list, or array. When a processor needs a triangle to work

on, it grabs the next one from the list, in typical self-scl,edulcd fashion. The overhead for fetching

the triangle is the time it takes to lock the list index variable, read the current value, increment it,

and unlock it. Presumably this can be done in a few instruction times given suitable architectural

support. Some wait time may be incurred if another processor already has the variable locked. This
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Figure 10: The five hyperbolic Platonic solids, n = 59276, h = 3.1.

Figure 11: NASA's Long Duration Exposure Facility. n = 17726, h = 6.2.
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should not be a problem for moderate numbers of processors, since the time to process a triangle

would be much larger than the time required to fetch and update the list index.

The other major shared data structure is the frame buffer. A naive approach would be to

let processors rasterize triangles directly into the frame buffer after transforming them into screen

coordinates. But since many processors would be doing this simultaneously, there would be memory

conflicts when triangles overlapped other triangles in the frame buffer. A poor solution would be

to lock the entire frame buffer for the duration of the rasterization step, but that would effectively

serialize the rasterization phase of the computation. A better solution is to partition the frame

buffer into p segments. Then triangles could be split into trapezoids as in our original algorithm.

But instead of sending the trapezoids to other processors, they would be placed on a shared list of

trapezoids needing to be rasterized. There would be one trapezoid list per frame buffer segment.

After processing one or more triangles, a processor would grab an unlocked frame buffer segment

and process all of the outstanding trapezoids queued for that segment. Because there are as

many segments as there are processors, at least one will always be unlocked. By not tying frame

buffer segments to particular processors, load balancing will be automatic and performance should

be better than the distributed memory version of the algorithm. As before, the overhead for

maintaining the trapezoids lists and locking and unlocking frame buffer segments should be small

compared to the cost of the rasterization computations.

Thus, the shared memory version of the algorithm becomes:
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Until done

If triangles remain

Select the next triangle

Shade the triangle

Transform, back face cull, and clip

Split into trapezoids

Insert the trapezoids onto the trapezoid lists

Find an unlocked frame buffer segment with outstanding

trapezoids (if any)
Rasterlze all of the trapezoids in that list

Continue

Termination of the algorithm is also simpler in the shared memory version. Each processor must

certify when it has finished working on its last triangle. This occurs when a processor checks for

the next triangle and none remain. After all processors have finished their last triangle, then when

all of the trapezoid lists become empty and all of the frame buffer segments are unlocked, rendering

is complete.

Modification of the performance model for the shared memory algorithm is straightforward.

An additional nonlinear term is needed to model contention for the triangle list index variable.

Message passing terms in the distributed memory model are replaced with terms which reflect the

time needed to update the trapezoid lists (including contention) and to search for unlocked frame

buffer segments with outstanding trapezoids.

8 Conclusion

In this paper we have described a parallel rendering algorithm for MIMD computer architectures.

The algorithm is attractive for its exploitation of both object and pixel level parallelism. We have

given a theoretical analysis of its performance on distributed memory, message passing systeJns,

and compared this with an actual implementation on tile 1,tel ii'SC/860 hypercube. Our results

show that the algorithm is a viable means of achieving a highly parallel renderer. Scalability is

limited primarily by communication costs, which increase as a function of the number of proces-

sors. Expected improvements in communication speed and optimization of the transformation and

rasterization software will allow this algorithm to compete favorably with other high-performance

rendering systems.
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